直线平面教案

发表时间:2025-05-19

直线平面教案(通用3篇)。

直线平面教案 篇1

[教学目标]

1. 认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位

2. 渗透对应关系,提高学生的数感.

[教学重点与难点]

重点:平面直角坐标系和点的坐标.

难点:正确画坐标和找对应点.

[教学设计]

[设计说明]

一.利用已有知识,引入

1.如图,怎样说明数轴上点A和点B的位置,

2.根据下图,你能正确说出各个象棋子的位置吗?

二.明确概念

平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为

由数轴的表示引入,到两个数轴和有序数对。

从学生熟悉的物品入手,引申到平面直角坐标系。

描述平面直角坐标系特征和画法

正方向;两个坐标轴的交点为平面直角坐标系的原点。

点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。

例1 写出图中A、B、C、D点的坐标。

建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

你能说出例1中各点在第几象限吗?

例2 在平面直角坐标系中描出下列各点。

()A(3,4);B(-1,2);C(-3,-2);D(2,-2)

问题1:各象限点的坐标有什么特征?

练习:教材49页:练习1,2。

三.深入探索

教材48页:探索:

识别坐标和点的位置关系,以及由坐标判断两点的`关系以及两点所确定的直线的位置关系。

[巩固练习]

1. 教材49页习题6.1——第1题

2. 教材50页——第2,4,5,6。

[小结]

1. 平面直角坐标系;

2. 点的坐标及其表示

3. 各象限内点的坐标的特征

4. 坐标的简单应用

[作业]

必做题:教科书50页:3题

(教材51页综合运用7,8,9,10为练习课内容)

明确点的坐标的表示法

仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系

通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征

直线平面教案 篇2

教学目标:

1.理解平面直角坐标系中的伸缩变换;

2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;

3.会用坐标变换、伸缩变换解决实际问题,体验用数学知识解释生活问题的乐趣。

教学重点:

理解平面直角坐标系中的伸缩变换。

教学难点:

会用坐标变换、伸缩变换解决实际问题。

授课类型:

新授课

教学过程:

一.复习引入

在三角函数图象的学习中,我们研究过下面一些问题:

(1)怎样由正弦曲线y=sinx得到曲线y=sin2x和y=sin?

(2)怎样由正弦曲线y=sinx得到曲线y=2sinx和y=sinx?

作图:

二.新课讲解

引导,观察启发与y=sinx的图象作比较,结论:

1.函数y=sinωx,x?R(ω>0且ω11)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的倍(纵坐标不变)。

2.y=Asinx,x?R(A>0且A11)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0设P(x,y)是平面直角坐标系中的任意一点,保持纵坐标y不变,将横坐标x缩为原来的倍,得到P’(x’,y’),那么 ①

我们把①式叫做平面直角坐标系中的.一个坐标压缩变换。

设P(x,y)是平面直角坐标系中的任意一点,保持横坐标x不变,将纵坐标y伸长为原来的2倍,得到P’(x’,y’),那么 ②

我们把②式叫做平面直角坐标系中的一个坐标伸长变换。

提出问题:怎样由正弦曲线得到曲线y=2sin2x?(它是由①②两种变换合成的)

平面直角坐标系中的任意一点P(x,y),经过上述变换后变为点P’(x’,y’),那么 ③

我们把③式叫做平面直角坐标系中的坐标伸缩变换。

定义:设P(x,y)是平面直角坐标系中的任意一点,在变换 ④的作用下,点P(x,y)对应到点P’(x’,y’),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

三.例题讲解

例1在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。

(1)2x+3y=0

(2)x2+y2=1

四.课堂练习

课本P8第4题

五.课堂小结

设P(x,y)是平面直角坐标系中的任意一点,在变换 ④的作用下,点P(x,y)对应到点P’(x’,y’),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

六.作业布置

直线平面教案 篇3

总课时:

7课时 使用人:

备课时间:

第八周

上课时间:

第十周

第4课时:

5、2平面直角坐标系(2)

教学目标

知识与技能

1.在给定的直角坐标系下,会根据坐标描出点的位置;

2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。

过程与方法

1.经历画坐标 系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作 交流能力;

2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。

情感态度与价值观

通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。

教学重点:

在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学难点:

在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学过程

第一环节 感 受生活中的情境,导入新课(10分钟,学生自己绘图找点)

在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点 的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的'连线与坐标轴的关系,坐标轴上点的坐标有什么特点。

练习:指出下列 各点以及所在象限或坐标轴:

A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取学生作答)

由点找坐标是已知点在直角坐标 系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让 你在直角坐标系中找点,你能找到吗?这就是本节课的内容。

第二环节 分类讨论,探索新知.(15分钟,小组讨论,全班交流)

1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。

(-9,3),(-9,0),(-3,0),( -3,3)

( 学生操作完毕后)

2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。

(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

观察所得的图形,你觉得它像什么?

分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?

(出示学生的作品)画出是 这样的吗?这幅图画很美,你们觉得它像什么?

这个图形像一栋房子旁边还有一棵大树。

3.做一做

(出示投影)

在书上已建立的直角坐标系画,要求每位同学独立完成。

(学生描点、画图)

(拿出一位做对的学生的作品投影)

你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?

(像猫脸)

第三环节 学有所用.(10分钟,先独立完成,后小组讨论)

(补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。

(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

(2)(0,0),(4,-3),(8,0),(4,3),(0,0);

(3)(2,0)

观察所得的图形,你觉得它像什么?(像移动的菱形)

2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。

先独立完成,然后小组讨论是否正确。

第四环节 感悟与收获(5分钟,学生总结,全班交流)

本节课在复习上节课的基础上,通过找点、连 线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。

在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。

第五环节 布置作业

习题5、4

A组(优等生)1、2、3

B组(中等生)1、2

C组(后三分之一生)1、2

本文网址://www.zw5000.com/xiaoxuezuowen/171625.html