邂逅霍金读后感

发表时间:2025-03-17

2025邂逅霍金读后感(热门十篇)。

邂逅霍金读后感 篇1

教学目标:

1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

2、探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

3、在探索平行四边形面积公式的过程中,感受转化的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。

教学重难点:

总结出平行四边形的面积公式。灵活运用平行四边形面积公式。

教具准备:

教师准备长方形一个、平行四边形两个;学生准备三个平行四边形。

教学过程:

一、复习导入

师:同学们,我带来了长方形和平行四边形,说一说你都知道长方形的哪些知识。

(学生说出长方形面积板书出来)

师:你还知道哪些平行四边形的知识?

(如有学生说不出高,师提醒)

师:长方形和平行四边形有哪些相同点,又有哪些不同点?

(平行四边形没有直角)

师:刚有同学说到了面积,那你知道这两个图形哪个面积大吗?

(学生说,比较)

师:那有同学说将这个平行四边形剪拼以后,它们两个的面积就相等了,这个想法非常棒。那我这还有一个平行四边形,这两个比较呢?

(学生说自己的想法)

师:那既然我们不能这样比较出它们的面积,那你们想不想知道还有没有其他的方法可以知道平行四边形的面积?

师:那我们这节课就一起来探索平行四边形的面积。(板书课题)

二、讲授新知

师:我们知道长方形有面积公式,能很快的算出它的面积,那平行四边形有没有呢?

师:有,那我们又如何来探究呢?我们学过长方形的面积,可不可以像刚才那位同学说的,将平行四边形转化成长方形我们再来探究呢?

师:那接下来我们就一起来探究平行四边形的面积公式,先将平行四边形转化成长方形。先不要动,请带着老师的几个要求去做。(课件)

师:(关注学生的剪法。让学生说说自己是怎样剪的,沿着什么剪的?如有很多同学剪的不标准,叮嘱沿着高剪以后,再让同学们剪一剪。多叫些学生来说想法。)

师:通过同学们的探究你发现了什么,找到平行四边形的面积公式了吗?

(生:说想法)

(课件在演示一下平行四边形的底和高相当于转化后长方形的长和宽)

师:那我有个问题,是不是平行四边形的面积就等于长方形的面积?

(不是,并不是所有的平行四边形面积都等于长方形的面积)(www.wEI890.CoM 唯美句子)

师:如果用S表示面积,那平行四边形的面积公式的字母表达是?

(板书:S=ah)

师:同学们今天很了不起,通过自己探索得到了平行四边形的.面积公式,那就下来带着这个知识我们来完成几道题好吗?

三、巩固练习

师:1、计算下面平行四边形的面积,快速列算式不计算。

师:2、同学们答得很快,都正确。那接下来将这两题写在本上。

(集体订正答案)

师:如果要想求平行四边形的面积的必备条件是什么?

师:哦,也就是知道高和底就能求出它的面积,是吗?

师:3、让我们一起来看看这道题。

(让学生说说想法)

师:也就是我们要找到相对应的底和高才能求出平行四边形的面积,那这条底边的高在哪?(课件出示)那能求出这条高的长度吗?

(板书:S=ahh=S/aa=S/h)

四、知识拓展

师:同学们现在请比较一下这两个平行四边形的面积。

(学生说想法)

师:那这个呢?对它们的都是相等的,因为它们等底等高。

五、小结

师:本节课你学会了哪些知识?

邂逅霍金读后感 篇2

教学目标:

1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2、使学生通过观察、操作、比较等活动,初步认识转化的方法,培养学生的观察、分析、概推导能力,发展学生的空间观念。

3、培养学生的合作意识和探究精神。

教学重点:

理解公式并会计算平行四边形的面积。

教学难点:

推导平行四边形的面积计算公式。

教具准备:

每人准备一个平行四边形纸片和一把剪刀,多媒体课件。

教学过程:

一、导入(媒体出示:)

1、认识图形。

2、口算长方形的面积。

3、回顾平行四边形的特征。

4、观察主题情景图:明明和芳芳争论场景:一块长方形花坛,一块平行四边形花坛。哪一块大呢?板书课题:平行四边形的面积

二、自主学习

1、学生用数方格的方法数一数,并把结果记载到80页的表格中。

2、思考:从表格中的数据,你发现了什么?(它们的面积相等)为什么会出现这样的结果?(因为通过数出的数据显示:长方形的长和宽分别和平行四边形的底和高相等。)

3、思考:如果不数方格,能不能计算出平行四边形的面积呢?能不能把平行四边形转化成我们已经学习过的图形来求面积?(学生交流找寻方法:可以用剪、拼、的方法把平行四边形转化成别的图形)

4、动手操作:学生可以独立操作,也可以同桌相互合作,自主探究平行四边形面积公式的由来,教师巡视。

5、提问:通过刚才的操作,你发现了什么?学生汇报交流:平行四边形的底和拼得的长方形的长相等,底边上对应的高和长方形的宽相等,所以平行四边形的面积也就等于拼得的长方形的面积。(教师根据学生回答媒体演示过程)

板书:

长方形的面积=长×宽

平行四边形的面积=底×高

6、学习用字母表示公式:我们用S表示平行四边形的`面积,a表示它的底,h表示它的高,计算公式用字母如何表示?(根据学生回答板书:S=a×h)

7、思考:要求平行四边形的面积,必须要知道哪些条件?(底和高)

教师强调:平行四边形有无数条高,底乘的高一定要是对应边上的高才是它的面积。

三、巩固提高

1、反馈:(媒体展示)口算平行四边形的面积,点学生回答。集体订正时强调:书写格式和单位。重点提醒:不对应底和高平行四边形面积。

2、作业:练习十五第1题,第2题。

3、拓展:(媒体展示)

(1)下面哪个平行四边形的面积大呢?为什么?

(2)一个长方形拉成一个平行四边形后,有哪些变化?

四、课堂小结

本节课你学会了什么?平行四边形的面积公式是怎么推导来的?要求平行四边形的面积,必须知道那些条件?

邂逅霍金读后感 篇3

教学目标

1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。

3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学

重难点

教学重点:理解并掌握平行四边形的面积公式

教学难点:理解平行四边形面积公式的推导过程

课前准备

多媒体课件

教学过程

师生活动

思考与调整

一、复习导入:

1、说出学过的平面图形。

2、在这些图形中,哪些图形的面积你会求?

二、探究新知:

1、教学例1:

(1)出示例1中的第1组图

要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)

(2)出示例1中的第2组图

要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)

(3)揭示课题:

师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的'计算”。(板书课题)

2、教学例2:

(1)出示一个平行四边形

师:你能想办法把这个平行四边形转化成学过的图形吗?

(2)学生操作,教师巡视指导。

(3)学生交流操作情况

第一种:①沿着平行四边形的高剪下左边的直角三角形。

②把这个三角形向右平移。

③到斜边重合。

第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。

②把左侧的梯形向右平移。

③道斜边重合。

(4)教室用课件进行演示并小结。

师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。

师生活动

思考与调整

(5)小组讨论:

①转化后长方形的面积与原平行四边形面积相等吗?

②长方形的长与平行四边形的底有什么关系?

③长方形的宽与平行四边形的高有什么关系?

(6)学生总结,形成下面的板书:

长方形的面积=长X宽

平行四边形的面积=底X高

3、教学例3:

(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。

转化后的长方形

平行四边形

长(cm)

宽(cm)

面积(cm)

底(cm)

高(cm)

面积(cm)

(2)学生操作,反馈交流。

(3)用字母表示面公式:S=ah(板书)

三、巩固练习:

1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。

2、指导完成练一练:强调底和高的对应关系。

四、总结:

师:通过今天的学习有哪些收获?

板书设计:平行四边形面积的计算

转化

已学过的图形新图形

割补、剪拼

因为长方形的面积=长×宽

所以平行四边形的面积=底×高

邂逅霍金读后感 篇4

他,先后毕业于牛津大学和剑桥大学;他,21岁时就不幸患上了会使肌肉萎缩的卢伽雷氏症;他,只有三根手指可以活动,演讲和问答只能通过语音合成器来完成;他,希望把自己当作只是碰巧身体有残疾的科学家,而不是不起作用的科学家;他,就是当今享有国际盛誉的伟人 ——斯蒂芬·霍金。

霍金,一个家喻户晓的名字。我在小学时就学过一篇关于他的文章。当我怀着激动的心情翻开《霍金传》这本书时,再次被霍金那身残志坚、不屈不挠、顽强拼搏的精神所震撼。众所皆知,霍金是个不幸的残疾人,看到《霍金传》的封面时,我也十分惊讶:头朝右边倾斜,肩膀左高右低,躯体瘦小扭曲,连嘴巴也歪成S型,坐在轮椅上。这与许多同样卓越的科学家的形象截然不同。书中还有许多对霍金的描写,让我深有感触。当医生诊断身患绝症的霍金只能活两年时,他虽然也曾沉闷、悲观,但在一番心理斗争后,他选择了与命运作斗争,选择了在死前做一些有价值的事情。他开始研究不断膨胀的.宇宙的不同性质。他思考着宇宙从什么时候开始?时间有没有尽头?他发现了黑洞的蒸发性,推论出黑洞的大爆炸……后来,他写出了不朽的名著《时间简史》。1974年,他当选为英国皇家学会最年轻的会员, 成为只有像牛顿这样的大科学家才能跻身的卢卡逊数学讲座的教授。

掩卷沉思,我感慨万千。

霍金,一个身残志坚的、卓越的科学家,可我们呢?拥有健全的身体,却无法像霍金那样,有一番成功的业绩,甚至没有他那坚持不懈、不屈不挠的品质。我还记得有一次,我的音乐期末成绩才只有80分,这对于其他科目都很优异的我无疑是个打击。因为这个成绩,我甚至没有评上三好学生。顿时,一种绝望油然而生。回到家,爸爸说:“琳儿,这次的只是一个小失败,今后的路还长着呢。”我想了想,也对,于是开始努力学习,平时休息时也会哼歌 。但是,老天似乎有意和我过不去,下一次的音乐考试我仍是80分。我没有勇气再去面对失败,并再去努力了。我甚至决定放弃这门学科了。如今读了《霍金传》这本书,我看到了命运比自己还惨的科学家——霍金。霍金都被命运捉弄残疾了,我这点挫折又算得了什么?是的,我应该向他学习,坚持下去,不屈不挠,这样才有可能成功。但遇到一些小坎坷就不再尝试,那离成功岂不是遥不可及?所以,今后我不会再这么轻易放弃任何一件事,像霍金一样,做到坚持不懈,不屈不挠。

《霍金传》这本书使我明白了做任何事都要坚持,不屈不挠,因为一旦放弃,何谈成功?霍金就是一个最好的例子。

邂逅霍金读后感 篇5

教学目标:

1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。

2、能应用平行四边形的面积计算公式解决实际问题。

3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。

教学重点:

平行四边形的面积计算公式的推导与应用教学难点:

理解和掌握用割补法推推导平行四边形的面积计算公式

教具准备:

平行四边形纸、长方形纸、多媒体学具准备:

平行四边形纸、剪刀、尺子教学过程:

一、创设情景,引出课题

1、创设情景

同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)

2、引出课题

提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的'面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。

二、新课

1、自学,用数方格的方法计算平行四边形的面积。

(1)多媒体出示P80图和表格

(2)读一读数方格时要注意的地方

(一个方格代表1平方米,不满一格都按半格计算)

(3)让学生在电脑上填写表格

(4)提问:观察表格的数据,你发现了什么?

(5)学生汇报。

(6)小结:通过数方格我们发现这两个花坛的面积是同样大的。

2、推导平行四边形的面积计算公式

(1)猜想

如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。

(2)验证

a、动手操作

剪——平移——拼,把一个平行四边形变成一个长方形。

b、讨论:

1、剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?

2、剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?

邂逅霍金读后感 篇6

教学内容:

冀教版五年级数学上56—57页

教学目标:

知识与技能:探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

过程与方法:经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

情感态度与价值观:在探索平行四边形面积公式的过程中,感受“转化”的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。

教学重点:

探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

教学难点:

引导学生用“转化”的数学思想,探索长方形与平行四边形的关系,自主发现平行四边形的面积计算公式。

教具、学具准备:

多媒体课件、平行四边形卡片。

教学过程:

师:同学们,上课之前,我们热热身,进行一组口算接力赛。

一、课前热身

口算接力赛

二、复习铺垫

你还记得这些图形的名称吗?关于这些图形你还想到了哪些学过的知识点?

学生汇报:说出这些图形的名称,根据自己的知识掌握水平说出相关的知识点。例如:长方形是轴对称图形,有2条对称轴,对边相等,4个角都是直角;长方形的面积=长×宽;正方形4条边都相等,4个角都是直角,正方形的面积=边长×边长;圆形也是轴对称图形,有无数条对称轴……。(重点让学生说出长方形和正方形的面积计算方法。)

师:同学们对这些图形了解的知识还真不少,认识了这些图形,了解了他们的特征,还知道了长方形和正方形的面积计算方法,你们真了不起!接下来老师将和同学们一起探究其他几个图形的面积计算方法。这一节课,我们先来探究“平行四边形的面积”(板书课题)

三、揭示课题、明确学习目标

师:请同学们自主学习本节课的学习目标,明确本节课要掌握哪些知识。(多媒体出示学习目标)

学习目标:掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

师:(多媒体出示平行四边形)下面我们一起探究平行四边形的面积。

四、小组合作、探究新知

1、动手操作、实践探究

(1)、让同学们拿出手中的平行四边形,提出第一个思考的问题,边操作边思考。

思考问题:怎样把手中的平行四边形剪一刀,变成长方形?小组合作动手试一试。

(学生思考并动手操作,小组内交流。教师巡视,参与其中。)

(2)、学生汇报。学生小组派代表用实物投影边展示边交流做法。

教学预设:学生甲:我们小组是这样做的,沿平行四边形的一个顶点做一条高,沿高剪下,得到一个三角形和一个梯形,将三角形向右平移得到一个长方形。

学生乙:我们小组是这样做的,做平行四边形的任意一条高,得到两个梯形,这两个梯形也可以拼成一个长方形。

……(有困难小组教师要给予引导。)

2、交流讨论、发现关系

(1)、师直观的多媒体演示“画——剪——移——拼”的过程。同时提出第二个思考问题。

思考问题:拼成的长方形和原来的平行四边形有什么关系?

(学生小组内交流讨论,教师参与其中,倾听意见,对于有困难的小组及时给予引导。)

(2)、学生汇报。让学生充分交流自己的看法。

教学预设:拼成长方形的面积和原来平行四边形的面积相等;拼成长方形的长和原来平行四边形的地相等,拼成长方形的宽和原来平行四边形的`高相等……。

3、归纳小结

教师用多媒体直观展示:拼成“长方形的长和宽”与原来“平行四边形底和高”的关系;以及它们面积之间的关系。得出:

拼成长方形的长和原来平行四边形的地相等,拼成长方形的宽和原来平行四边形的高相等;拼成长方形的面积和原来平行四边形的面积相等。

因为,长方形的面积=长×宽。所以,平行四边形的面积=底×高。

用字母表示为:S=ah

4、尝试应用

师:学习知识,就是为了更好的应用所学来解决问题,请同学们试着解决下面问题。

完成“试一试”

(课件出示试一试习题)学生用自己喜欢的方式读题,教师提示学生写好公式在计算,指名板演其他学生完成在答题纸上。

五、小结收获、总结得失

1、学生小结

师:同学们表现的都不错。大家来说说通过本节课的学习,你又收获了哪些知识?你还有哪些不明白的地方?你打算怎样解决?和你的同学交流一下!

2、教师小结。

师:真不少!不仅学会了知识,还学会了一些学习方法,在今后的学习中只要大家运用这些方法,一定会学会更多的知识。

邂逅霍金读后感 篇7

浩瀚的宇宙,有许多未知的领域等待我们去发掘探索,科学家们一步步迈向更远处,他们孜孜以求,寻找着真理。

《霍金传》就为我们介绍了一位具有传奇色彩的理论物理学家。主人公当然是斯蒂芬霍金。作者克里斯廷拉森将为我们介绍这个轮椅上的卓越科学家。读完这本书,我们就会认视到一个全面而又真实的霍金。

作者将霍金从出生到老年的经历和成就都写得认真仔细,给我留下了深刻的印象。

1942年1月8日,随着一阵稚嫩的啼哭,霍金降生在牛津。后来的几年里,他有了两个妹妹。受父亲影响,11岁的霍金决定以科学为业。后来全家去了印度,他却留在牛津与亲戚汉弗莱一家生活。17岁时,他以优越成绩考入了牛津大学。20岁时,他出现了病症,这年,他在牛津大学毕业,并以优的成绩被剑桥大学录取。他开始在萨马指导下读研,研究宇宙学和广义相对论。1年后,他被确诊患上肌萎缩性侧所硬化症,预测两年内死亡。这消息无疑是一个晴天霹雳,他并未绝望,而是继续学术研究,他的事业也开始蓬勃发展。这后来的`几年,他发表的论文不断获奖,可病魔并未罢手,将他永远拖上了轮椅,他越搓越勇,致力于研究,屡次获奖。42岁到44岁间,他完成了《时间简史》,此后,他声名远扬。他开始了更深远的探索。59岁那年,他的《果壳里的宇宙》发行了。

在这本传记中,我首先读到了一个坚强乐观的霍金,当他得知自己患病后,曾一度绝望,可他看到另一病床的白血病男孩死后,他感到自己的价值,发现了自己存在的意义。从此,他坚强地挣出了绝望,并竭尽所能地探索宇宙,他的事业道路也变得前景辉煌。

作为一名科学家,我却读到了幽默感,这本不属于这一类人的词竟出现在霍金的身上,在学术界内应是十分难得的,他曾与索恩在1974年关于天鹅X—1是否是黑洞打了传奇式的一个赌,还立下字据,这冷嘲式的幽默感也让人惊奇。

就这样,我似懂非懂地读完了《霍金传》,虽说我不能理解他那深奥的学术研究,但我却对科学知识有了更全面的了解。我也认识了一个真正的霍金,他教会我面对困难的勇气,相信真理,相信科学,乐观与自信。

想让生命实现价值,就一定要坚持不懈,像霍金那样去执着地追求。

邂逅霍金读后感 篇8

教材分析

义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。

学情分析

1.学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。

2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。

教学目标

知识与技能

1.使学生理解和掌握平行四边形的面积计算公式。

2、会正确计算平行四边形的面积。

过程与方法:

1.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,

2、发展学生的空间观念。

情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。

教学重点和难点

重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。

教学过程

一、复习导入

1.什么叫面积?常用的面积计量单位有那些?

2.出示一张长方形纸,他是什么形状?它的面积怎么算?

二、探究新知

1、情景导入:出示长方形、 平行四边形 。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢 ?

板书课题:平行四边形的面积

2.用数方格的方法计算面积。

(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的'都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

(2)同桌合作完成。

(3)汇报结果,可用投影展示学生填好的表格。

(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

2.推导平行四边形面积计算公式。

(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

b.请学生演示剪拼的过程及结果。

c.教师用教具演示剪—平移—拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。出示讨论题:

①拼出的长方形和原来的平行四边形比,面积变了没有?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,

这个长方形的宽与平行四边形的高相等,

因为 长方形的面积=长×宽,

所以 平行四边形的面积=底×高。

3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

S=ah

三、 应用反馈。

1.出示教材练习十五第1题。读题并理解题意。

学生试做,交流作法和结果。

2.讨论:下面两个平行四边形的面积相等吗?为什么?

学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)

四、课堂小结。通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)

邂逅霍金读后感 篇9

教学内容:

北师大版五年级数学上册第四单元(P53——P55)

教材分析:

本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。

学情分析:

二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。

教学目标:

经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。

掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。

能运用平形四边形的面积计算公式解决相关的问题。

教学重点:

通过操作活动掌握平行四边形的面积的计算方法。

教学难点:

经历推导平行四边形面积公式的过程。

教法学法:

实验探究、推理验证、小组合作学习

教具准备:

课件、剪刀、准备平行四边形若干。

教学过程:

一、开门见山,导入新课

今天我们一起来探索平形四边形的面积。(板书课题)

二、新知探究

1.分析平行四边形给定的.3个数据所表示的意义。

2.如何求这个平行四边形的面积,说一说你的想法和理由。

猜想:

(1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。

(2)提出来数方格的方法来试一试。看选择哪两个数来计算比较好。

3.借助方格纸数一数,比一比

学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。

要求:

(1)独立完成

(2)小组内交流一下你的想法。

(3)方法展示。

(4)猜想结果:平行四边形的面积等于底乘高。

这只是我们的猜想,那如何来验证我们的猜想是否成立呢?

4.平形四边形如何转化为长方形,验证猜想。

(提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)

(1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。

(2)是不是沿任意一条高剪开都可以拼成长方形呢?

动手操作,验证猜想。

(3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?

生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。

(4)再仔细观察,你还有什么发现?

生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

5.怎样求平形四边形的面积?想一想,与同伴交流

(1)拿着你们组刚才转化的图形再摆一摆,说一说整个操作过程。说一说我们怎样求平行四边形的面积?

(2)你会填吗?

A、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积( ),长方形的长相当于平行四边形的( ),长方形的宽相当于平行四边形的( ),因为长方形的周长=( ),所以平行四边表的面积=( )。

B、如果用S表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:S=( )。

6.计算主题图中的平形四边形的面积。

三、实践应用,巩固与提高。

1.计算下列图形的面积(抢答)

(1)底为4厘米,高为2厘米。

(2)底为5分米,高为9分米

(3)底为3米,高为7米

2.判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等( )

(2)平行四边形底越长,它的面积就越大( )

3.计算下列图形的面积。(单位:厘米)

四、课堂小结。

1.你今天学习了什么?有何收获?

2.在计算平行四边形的面积时,应注意什么?

板书设计:

探索活动:平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

S=ah

邂逅霍金读后感 篇10

霍金,被喻为“当今的爱因斯坦”。他从研究黑洞出发,探索了宇宙的起源和归宿,他不仅在学界做出了极为突出的贡献,还是一位极有传奇色彩的人物。

霍金拥有聪颖的大脑,17岁时便考取了英国久负盛名的牛津大学,20岁时他竟然轻松进入剑桥大学深造,成绩和智力都十分惊人。霍金在宇宙学这方面有十分杰出的成就,他得到过许多奖项,还被任命为剑桥大学卢斗斯数学教授。可是,就在这是厄运降临了,他得了不治之症————肌萎侧索硬化症,当病情恶化时,整个身躯只有三根手指勉强能动,医生说他活不到两年,但他却奇迹般的活了下来,并且在轮椅上一坐就是20年,他对命运说:“只要活着就有希望”。在这一场突如其来的灾难中,他跌倒了,但又爬了起来,他凭着自己的智慧和惊人的毅力,在艰难的.条件下完成了这部伟大的巨著《时间简史》,这本书一开始还没有人关注,直到1995年才轰动全世界。登上了当今科学金字塔的顶峰,推动了科技的飞速发展。在发布会上,有为记者问他:“霍金先生,难道您不为只能困在轮椅上而悲伤吗?”霍金镇定自若地用手指在键盘上敲出:“我没有感到悲伤,相反我十分庆幸,因为上帝虽然把我固定在轮椅上,但却给了我足以想象世间万物,足以激发人生斗志的能力。”的确,他战胜了命运,战胜了自己。

如果说,命运是漆黑的夜空,那么因为他坚强的意志,生命变得繁星闪烁。如果说命运是干枯的井水,那么因为他坚强的意志,生命变得涌泉不断。如果说命运是荒寥的沙漠,那么因为他坚强的意志,生命变得郁郁葱葱,生机盎然。霍金面对病魔没有被吓到,更没有退缩,他顽强的抵抗着,不屈不饶。我们应该向他学习,面对困难和挫折时,要勇于克服困难,从哪里跌倒就从哪里爬起来。